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image, as we have seen in orthorhombic Ti2Nbl0Oe~. 
The unit-cell dimensions (which are listed in Table 8) 
together with the ideal and the probable distorted 
atomic arrangements for each can readily be predicted, 
and it is therefore a simple problem to compute 
theoretical Guinier diffraction patterns to compare 
with those made from laboratory preparations. Such 
an aid is considered indispensable in a problem of this 
kind. 

Attempts were made to prepare the two inter- 
mediates n= 2 and 5. The low temperature forms of 
Nb~.O~ and Ti~O~ were weighed and heated together 
at small  temperature intervals from 700 °C. through 
to the quenched liquidus. TicNbeO~" (i.e. n=2) was 
not found in any of these, and all specimens consisted 
of TiNb~.Ov plus rutile. TiNb~4Oav (n=5)  gave a be- 
wildering variety of diffraction patterns bearing con- 
siderable similarities to one another as well as to 
aNb~O~, the high temperature form, but  containing 
diffuse regions and many  additional lines. At no time 
could it be stated that  the Guinier patterns consisted 
solely of one or other of the two predicted forms, and 
evidently considerable crystalline disorder was present 
as well. 

In  some respects the cell dimensions reported for 
Nb~O~ in certain of its forms resemble those for 
Me~sOa~ in Table 8, the high-temperature form to the 

monoclinic and the ~, form to the orthorhombic.* 
Similarities between the 7 form and an MesO8 oxide 
(U3Os) have also been noted (Holser, 1956). Disorder 
as well as distortion undoubtedly plays an important  
role in these structures, and additional reference to 
this will be made elsewhere. 

It  appears, therefore, that  TiNb20~ and Ti2Nb10029 
are the only representatives of the series Me3nOsn-8 
which can be identified with certainty within 
TiO2-Nb205. Other members may eventually be found 
in chemical systems of a related kind. 
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Following Bragg's method, expressions for continuum, dipole and Coulomb anisotropies as well as 
ionic polarizability and density changes are given for the piezo-optic birefringence in crystals. Certain 
simplified assumptions lead to the evaluation of the strain-optical coefficients P n  and P12 from the 
observed difference (Pn-PI~). Expressions for Mueller's strain polarizibility constants are seen to 
depend on wavelength and temperature. 

1. Introduction 

Attempts have been made by Banerjee (1927), Herz- 
feld (1928), Herzfeld & Lee (1933) and Mueller 
(1935a) to explain the photoelastic effect in cubic 
crystals. Banerjee developed a theory on the lines 
suggested by Bragg (1924a, b), Herzfeld & Lee adopted 
the lattice sum method of Madelung, and Mueller 
based his calculations on Born's theory of crystal 
lattices. While all these investigators considered the 
anisotropies arising from the Lorentz-Lorentz and 
Coulomb forces, Mueller considered the additional 
effect of strain on ionic polarizabilities. Mueller's 

t reatment shows that  Bragg's & Born's methods are 
equivalent. All these attempts, however, have had a 
l imited success. Discussions (Poindexter, 1955) based 
on quantum-mechanical considerations also do not lead 
to a satisfactory solution of the problem. 

Mue]ler has drawn attention to the serious errors 
found in Banerjee's work. Banerjee's approach though 
essentially sound, does not take into account all 
possible factors that  contribute to the observed 
birefringence. Mueller's work, in spite of its distinctive 
advance over the work of Banerjee and of others, 
neverthelsss itself suffers from certain serious draw- 
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backs. For example, his expressions for the birefrin- 
gence involve assumptions which recent experiments 
have shown to be untenable. These and other aspects 
have been considered in the following t reatment  which 
is based on Bragg's method. The theory outlined here 
yields quanti tat ive results in agreement with ex- 
perimental facts. The results have been discussed in 
Par t  I I  of the work. 

2.  P h e n o m e n o l o p ,  i c a l  t h e o r y  

The phenomenological theory of photo-elasticity was 
given by  Pockels in 1889. According to this theory the 
number of strain-optical constants tha t  would be 
necessary to describe the photoelastic properties of a 
crystal depends on the class to which the crystal 
belongs. In  the case of cubic crystals of the Ta, 0 
and On classes only three optical constants Pn ,  P~e 
and P44 are necessary completely to define the photo- 
elastic effect. 

Suppose tha t  a rectangular bar of a cubic crystal 
with edges parallel to [100], [010], [001] is stressed 
along the Z-axis [001]. The refractive index of this 
stressed bar will be different for light vibrations 
parallel and perpendicular to the direction of stress. 
Let the indices be denoted by n~ and nx and let the 
propagation of light be in the y-direction. The following 
expressions then define the strain-optical coefficients 
P n  and Pie 

dnx = n = -  n = - P19(nS/2) e ,  

dnz = n~ - n = - Pn(nS/2)  e ,  (1) 

where n is the refractive index of the unstressed 
crystal and e the strain induced in the Z-direction 
due to the application of a stress. 

A similar bar of the crystal with orientations [101], 
[101], _[010] when stressed along the Z-direction [101] 
or [101] and the light is observed along [010], will 
yield the strain-optical coefficient P44 given by  the 

expression n'~- n~ = -- Paa(nS/2) e', (2) 

where n~ and n~ are the refractive indices and e' is the 
corresponding strain. 

The t reatment  in Parts  I and I I  will be confined 
to a discussion of the coefficients P n  and P~e. 

3. Change in ref rac t ive  index due to a n i s o t r o p i c  
fields 

Following Burstein & Smith (1949) we will assume 
tha t  the Lorentz-Lorenz equation is the proper form 
for representing the refractive index of cubic crystals. 
The unequal changes in the refractive index resulting 
from deformation may be considered to arise from the 
following anisotropies : 

1. The Lorentz-Lorenz anisotropy due to the 
material continuum. 

2. The Lorentz-Lorenz anisotropy due to the 

dipoles within a cavity of lattice dimensions. 
This we shall call the dipole anisotropy. 

3. Coulomb anisotropy due to the presence of 
positive as well as negative ions within the 
cavity. 

The Lorentz-Lorenz anisotropy has been calculated 
by Mueller (1935b) on lines suggested by Havelock 
(1908). He has shown tha t  for a medium strained in 
the Z-direction, where the strain ellipsoid has the 
axial ratio 1 : 1 : 1 + e, the refractive index nx for light 
vibration in the X-direction is given by (Brayborn, 
1953) 

3 ( n ~ - l ) = 4 z ~ N a ( ( n ~ + 2 ) + K ~ ( n 2 - 1 ) }  (3) 

with similar expressions for vibrations in the Y and Z 
directions. Here K ~ = K y = 2 e / 5 ,  K ~ = - 4 e / 5 ,  a is the 
polarizability of the molecule and N is the number of 
such molecules in unit volume of the substance. 
Equation (3) applies only to isotropic bodies. 

In  ionic crystals of the NaC1 type besides the 
anisotropy of the continuum, two additional aniso- 
tropics, namely the dipole and Coulomb anisotropies, 
are present during deformation. These will further alter 
the refractive indices, nx etc. of equation (3). In order 
to evaluate them, following the t reatment  of previous 
workers, we assume a cavity spherical in shape and 
of radius greater than l/3 r and less than 2r, where 
2r is the lattice constant. When this cavity is sub- 
jected to a uniaxial stress, in the direction of one of 
the edges of the cell, the sphere changes over to an 
ellipsoid and the ions originally arranged in a cubic 
lattice will be re-arranged in a rectangular lattice of 
dimensions 2x, 2y, 2z, when the centre of the cell is 
chosen as the origin of the co-ordinate system. 

Let the polarizabilities of the ions be aj in the 
unstressed condition and let a beam of light travel 
through the cavity with its electric vector of amplitude 
E~ in the Z-direction. The induced dipole moment of 
the ions will be 

(be)tz = c¢lEefg. , (4) 

where Eem is the effective electric field in the cavity, 
when the interaction of the ions is neglected, (/z)j~ 
represents the dipole moment of the negative or the 
positive ion according as j is 1 or 2. If the interaction 
is taken into account, we proceed as follows: 

A doublet at  the point (x, y, z) whose moment 
components are #~,/zu and /z~ will give rise to a field 
at the origin. In Heaviside units which we shall use 
throughout this paper x, y and z components of this 
field will be 

# x 3 X  2 - R  e+ #y  3xy  /z~ 3xz 
Ex~-- 4 ~  R 5 47~ ~ + 4---~ R -----~ 

Eya= # y 3 y e -  Re /z~ 3yz tt= 3xy  

4z~ R 5 + 4 ~  ~ + 4~  R 5 

E~c~=/z~ 3z 2 - R  e # x  3xz /.zy 3yz 
4z  R 5 + ~  ~ q - +  (5) " - -  ;tz~ R~ 
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Here R e = x ~' + y~ + z% 
There will thus be at the centre a resultant field 

due to all the dipoles contained in the cavity. If the 
incident field is polarized in the Z-direction and the 
centre is occupied by either a negative or a positive 
ion, the resultant dipole field will be given by 

E~a = D~z (tt~z) ( e/r ~) , (6a) 

where j represents the ion occupying the centre of the 
cavity and k the ion the effect of which is to be cal- 
culated at the centre; d indicates that  the field is a 
dipole field. 

For an incident field polarized in the X-direction, 
the corresponding expression is 

(6b) 

where D¢~z and D~z are the numerical values of the 
finite lattice sums in the deformed state. They may 
be evaluated using the expressions given in the 
appendix. In the stressed condition, the dipoles 
within the cavity produce a net field at the centre 
which in the undeformed state is zero, since D¢~= 
D ~  = 0. 

In order to evaluate the Coulomb fields we again 
consider the effect of the incident field E~ on the ions 
of the cavity. Under the influence of the field, the 
negative and positive charges of an ion will be dis- 
placed in opposite directions by the respective amounts 
s~ and se or s~ generally. If ~ is the effective charge 
(FrShlich, 1949). and fk is the oscillator strength of 
the ion, the dipole moment may be expressed as 

f~ e*s~/~/(4u) = ( / ~ ) .  (7) 

The displaced charges will create at the centre of 
the cavity a Coulomb field of net magnitude 

E:~o = (~ ~ / : ) C ~ .  ( ~ / f  ~ ) , (8a) 

where fl denotes the number of valence electrons of 
the ion under consideration. 

For a field polarized in the X-direction the corre- 
sponding expression is 

E ¢~c = (fl e/ra)C¢~ (a~/fi:), (8b) 

where C¢~ and C¢~x are the numerical constants of 
the lattice. These may be evaluated using expressions 
given in the appendix. 

When the cell is in the unstressed condition, the 
Coulomb field is zero, since C ~ =  CCk~=0. 

Combining expressions (3), (6) and (8), we have 

3(n~- 1)= N ~ :  {(n~ + 2) + (n ~ -  l)Kx} 

{ _/V:a:a~ : ~ f l } ( n 2 + 2 ) e  (9) + D ~  r--- ~ -  + C~x N 

with a similar expression for nz. 
Here as is the polarizability of the ion under con- 

sideration and N¢, the number of such ions in unit 
volume. 

4. D e n s i t y  a n d  p o l a r i z a b i l i t y  c h a n ~ e s  u n d e r  s t r e s s  

In addition to the anisotropy changes considered in 
the foregoing section, changes in density as well as 
the polarizability of the ions, occur under stress. To 
evaluate the density changes, consider a cube of refit 
dimensions subject to a stress in the Z-direction. 
If a is the Poisson's ratio the strains s and as produced 
parallel and perpendicular to the stress direction will 
alter the volume by an amount s ( 1 - 2 a ) .  The change 
in the number of ions per unit volume is then 
- s(1-2~r)N:. 

Polarizability changes under strain were first quan- 
titatively considered by Mueller. He assumed the 
refractivities of the ions to be linear functions of the 
strain. In the presence of a combined field resulting 
from the continuum, the dipole and the Coulomb 
anisotropies, an effective polarizability of the ions may 
be assumed to arise in the following manner: 

The dipole moment of the j th  ion, in the presence 
of the resultant field is given by 

where 

( /~)  ~a~v = a¢F¢~ in the Z-direction 
(/U:x)iacv = cqF¢x in the X-direction, (1o) 

CCjz -= 

+ Cjkz .-~.t  + (n2-- 1)}8] 

0¢jx 

(13) 
or 

ccj~ = cq(1 + 2k~s) 

in the form first given by Mueller who named ~tk~ 
and 2kz the strain polarizability constants. Here 

2k, n e 2 Djkz-~ r fk /  --3 = - -  + C ~  - ~  + (n e -  1) 

~ =  ~ 2 D ~  + C ~  + ( ~ - 1 )  . 

Fjz = Eiz + E ~  + E~c + K~Pj 

F~x = Eix + E jxa + E ~c + KxPj  . (11) 

P~ in these expressions denotes the polarization of 
the medium per unit volume. 

We may alternatively assume that the dipole mo- 
ments of expressions (10) arise due to the effective 
polarizabilities a~z or ~jx in the Z or X direction under 
an incident field E~ or E~x according to the equations 

and 
(~ujz)~acv = cq~Eix. (12) 

Equations (10), (11) and (12) together yield the 
following expressions : 
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These expressions indicate that  the polarizability 
constants are functions of wavelength and tempera- 
ture, a conclusion in agreement with experimental 
facts. 

5. Evaluat ion of the anisotropy constants  

In evaluating the dipole and Coulomb fields, the 
following assumptions have been made: 

(1) The field responsible for inducing the dipole and 
Coulomb effects is the effective field E e f ~ . = E t + P / 3 ,  

where E~ is the incident field and P is the polarization 
field. 

(2) On deformation, the distance between any two 
atoms is changed in the same ratio as the correspond- 
ing bulk dimensions of the substance. 

(3) On deformation, the unit cell within the cavity 
does not suffer a volume change. 

Before deformation, the distance between any two 
atoms in the cell is r in the X, Y and Z directions. 
On the application of a stress T~ the distance in the 
three directions are altered to z = r +  6z, x = r - 6 x ,  
y = r -  6y, where 6x, 6y and 6z are the linear deforma- 
tions caused by the stress. On the basis of assumptions 
2 and 3 and neglecting the product and higher power 
terms in 6x, 6y and 6z, the numerical constants 
D~(z or x) and C1~(z or z) may be calculated. Their values 
are given in Table 1. They have been evaluated using 
expressions given in the appendix. 

Table 1. Numerical constants 
Dnz----D92z---- 0"2711 D n x = D 2 2 x =  - - 0 . 2 7 1 1 a  
Dl~z = D~4z= -- 1 .1869  D~gx---- D21x = 1 . 1 9 6 9 a  

Cnz  = C~2z = 1 .6922  C n x  = C2~x = --  1 . 6 9 2 2 a  
C12 z = C21 z = - -  4 . 2 0 8 3  C12x = C21x = 4 . 2 0 8 3 a  

The numerical values of the finite lattice sums play 
an important role in determining the nature of the 
anisotropy and the polarizabilities of the ions in cubic 
crystals under consideration. I t  is found that  these 
values depend very largely upon the nature of the 
assumptions made in calculating them. For example, 
if we assume with Banerjee & lVIueller that  the 
deformations in the perpendicular directions to stress 
are zero, it is found that  the worked-out numerical 
constants agree well with the values given by them 
as shown in Tables 2(a) and (b). On the other hand, 
it is assumed that  6x= 6y~= 0, the results are entirely 
different. 

Table 2(a). Dipole anisotropy constants 
A u t h o r s  

A n i s o t r o p y  " B a n e r j e e  
c o n s t a n t s  6 x  = 6y # 0 6x = ~y = 0 6x = 6y = 0 

B n z  =B22z 3"408 2" 10 1"901 
B12z =B94z - -  14"92 - -  10"973 - -  9"9613 

B n x = B 2 2 x  - -  3 - 4 0 8 a  - -  1 .060  - - 0 . 9 5 0 2  
B12x----B~4x 14.92 a 5 . 4 8 6 5  4 . 9 8 0 7  

W h e r e  Bik(z or x) ---- 4 z D j k ( z  or x). 

Table 2(b). Lorentz-Lorenz anisotropy constants 

A n i s o  - 
t r o p y  

c o n s t a n t s  

811Z 
812Z 
811Z 
812X 

A u t h o r s  
s p h e r i c a l  c a v i t y  M u e l l e r  

^ ( c u b i c a l  c a v i t y )  
6 x  ---- 6y ~= 0 6x ---- 6y = 0 6x = 6y = 0 

0 .2755  0 .09  - -  0 .06  
- - 2 . 1 0 7  - - 2 . 0 0  - -  1.91 

0 . 1 3 3 3 - -  0 . 5 4 2 2 a  0 .045  0 .03  
0 - 1 3 3 3 + 2 . 3 7 4  a 1 .00 0 .95  

2Bik(z or x) K(z  or z) 
W h e r e  8]k(z or z) = ~ N ~  + 3 

N ~ = 4 f o r k = l  o r  2. 

6. Change in refractive index  under  
unidirect ional  s tress  

Equation (9) gives the refractive index of the crystal 
when the anisotropic fields alone are taken into 
consideration. Introducing the additional changes of 
polarizability and density of ions considered in Section 
4, and assuming ~ = ~1 + a2, (14) 

where a is the polarizability of the molecule, the final 
expression obtained for the change in the refractive 
index for light vibrations in the Z- and X-directions 
are given below: 

( n 2 - 1 ) ( n 2 + 2 ) ( 1 - 2 a ) s  2(n2-1)2(n2+5) 
d n z - - -  

6n 45n 

+{ (n2+ 2)2 (n2 + 5) [1"458 + 5 4 n  2.9005fl (1/fl + 1/f2)]O 2 

(n 2 -1 )  (n2 + 2)(n2 + 5) 

18n 

× [2.916+ 4"2°83~ 7"5927~10 

[ l'6922fl]~e (n2--1)2(n2+5) 0.2711 + 
+ 3n f~---2 J/ 

(n2--1)(n2+2)(1--2a)~ (n2-1)2(n2+5) 
d n x - - -  + 

6n 45n 

- {  (n2+ 2)2 (he + 5 4 n  5)[1.458+ 2.9005fl (1If1 + 1/f~)]O 2 

(n e -  1)(n2 + 2)(he + 5) 

18n 

[ 4 2083  7.5927  1 
× 2-916+ ~ + f~ j0  

[ 1"6922fl]~°*~, (n2-- 1)2 (n2+ 5) 0.2711+ 
3n ~ J/ 

a (1 or 2) 
~3 

+ 

where 
0=  

Putting 

M= (n2-1)2 (n2 + 5) 
15n 

L = ( n 2 - 1 ) ( n 2 + 2 )  
6n 
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and 

A = (n~+2)~(n~+5)[1 .458+2.9005f l (1/ f~+ 1/f~)]O ~ Ca~z 
54n 

(n ~'- 1)(ne + 2)(n~ + 5) 

18n 

[ ~4"2083fl 7.5927fllf~ J × 2-9164 ~ + 0 

- 1 .6922~1  + (n2 1)~"(n2+5) [0-2711+ 
3~  ~ 

the  strain-optical  coefficients as defined in equations 
(1) can be convenient ly  expressed in the following 
form : 

P n - P ~ 2 = ( 2 / n S ) { 3 M - ( 1  + (~)A} 

P ~ + 2 P ~ = ( 2 / n S ) ( 3 L - A ) ( 1 - 2 c r )  (15) 
and 

(n~/6) (P~ + 2P~)  = L(1 - 20) , 
where 

~to=2~+ A(1--2(r) 
3L " 

Ci~z 

A P P E N D I X  

( D ~ - -  D2~) (4ge/ra) 

= 3~{(~2  + ~ ) - ~ / ~  + (y~+  ~)-~/~} 
--  {(x ~' + y~)-s/~ + (y~ + z ~')-a/~' + (z ~' + x~)-a/e} .  

(Dl~.z ---- Dmz) (4ge/r a) 

= 12z~R-~ + 3 z - S -  (4R-~ + x-S + y-~ + z-a). 

(D~x = D2~x) (4~e/r3) 

= 3x~ {(x ~" + ye)-~/e + (xe + z~)-~/2} 

--  {(x ~ + y~) -~/~ + (y~ + z ~) -~/~. + (z ~ + x ~') -~/~}. 

(D12x = D~.lx) (4z~e/rS) 
= 12x~/t -~ + 3x-a-- {4R-a + x-3 + y-~ + z-~}. 

f~*r~ 
= (~ - s~)-~. + 4 ( ~ -  ~ )  {z ~. + y2 + (~ - ~)~}-~/~ 
- [(z + s~) -~ + 2s~(x2 + s~)-~/~ + 2s~(y~ + s~.)-3/~ 
+ 4(z + s~ ){x~ + y~ + (z + s~)~}-~/2] 

where j = 1, and ]c = 2 or j = 2 and k = 1 

C~x 

C]kx 

ockEem e V(47~) 

f~ ~*r3 
= 2(z -- s~){z  ~ + (z -- s~)2} 3/2 
+ 2 ( z -  s~){y ~ + ( z -  sk)2} -8/2 

- 2 ( ~  + s~){x~ + (~ + ~ ) 2 }  ~/~ 

- 2(z + s~)(y~ + (z + s~)~}-8/2 

where j = k = 1 or j = k = 2 .  

o~Eem e V(47Q 

f~r~ 
= 2(x - s~){y~+ (X-s~)e}-s/~ 

+ 2 ( x -  s~){z~ + ( x -  s~)2}-81. 

- 4s~{(y" + z2+ s~.)}-3/2_ 2(x + s~){y2 + (x + s~)9} -8/~. 
- 2(x  + ~ ) { ~  + (z + s~)~} ~ ~. 

where j = k = 1 or j =/c = 2 . 

c~Eefr, e V(4~) 

f k e*r3 

= (x--s~)-9.+4(x--sk){yg.+ zg.+ (x-- s~)2}-s/~, 

- -  (x + s~ )-2 + 2sk(y2 + s~)-3/2 + 2s~(z 2 + s~)-3/2 
+ 4(x + ~){y~ + ~ + (z + ~)~}-~/~ 

where j = 1 and/c  = 2 or j = 2 and k = 1 . 
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